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ABSTRACT 

 
The IPCC indicates that global mean temperature may increase 2°C or more above preindustrial 

levels; therefore, understanding weather impacts on staple crops is vital for creating adaptation 

strategies and maintaining global food security. This study analyses the impact of weather 

variables on canola and spring wheat using weather data from rural municipalities across 

Saskatchewan over the period 2011-2020. We first implement a Geographic Information Systems 

model to interpolate Saskatchewan weather data. We then utilize a panel econometric temperature 

binning model to analyze the nonlinear relationship between crop productivity and temperatures. 

We find temperature resiliency for wheat up to daily average temperatures of 21oC and canola to 

19oC. Beyond these thresholds, increasingly large reductions in potential yield occur as the 

growing season temperature increases. Wheat yield potential is reduced by 0.05% on average for 

every additional day where average temperatures are 21-23oC and reduced by 2% for every 

additional day where average temperatures exceed 23oC. Canola yield potential is reduced by 0.2% 

for every additional day where average temperatures are 19-21oC, 0.6% for 21-23oC, and 3.3% for 

days where temperatures exceed 23oC. 

Key Words: Weather impact on crop yields; temperature; climate change; genetic modification  
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1. Introduction 
Agriculture and the global food supply are susceptible to the impacts of climate change. Canadian 

agriculture and food security are not an exception. According to the IPCC [1], climate change has 

already given rise to both positive and negative impacts in agricultural productivity, with the 

former more common than the latter. While increased atmospheric concentrations of carbon 

dioxide (CO2) increase crop yields, higher temperatures tend to reduce crop yields. This issue is 

addressed in this paper using a GIS model, weather data and crop yields for the province of 

Saskatchewan, which is Canada’s bread basket.  

Due to polar amplification, Canada’s rate of warming is projected to rise faster than the 

global rate [2]. For example, Vincent et al. [3] report that over the period 1950–2016, Canada's 

annual mean surface air temperature warmed by 1.8 °C, while the global mean temperature 

warmed by 0.85°C during 1880–2012. Furthermore, daily minimum temperatures are rising 

slightly faster than daily maximum temperatures [4]. Since high temperatures can adversely affect 

crop yields, it is crucial to understand how Canada's crop yields may change under climate change.  

Canada is one of the largest agricultural producers and exporters in the world. According 

to Agriculture and Agri-Food Canada [5], the agriculture and agri-food sector accounts for one in 

nine jobs and some 7.4 percent ($139.3 billion) of Canada’s gross domestic product (GDP). As 

Canadian food production far exceeds domestic needs, Canada is the fifth largest exporter of 

agricultural and agri-food products after the EU, U.S., Brazil, and China. 

Major field crops grown in Canada are wheat, canola, corn, barley, and soybeans. When it 

comes to profitability and crop rotations, wheat and canola are of primary importance. According 

to Statistics Canada [6], acreage and yields of canola and wheat have recently been increasing, and 

the crops are significant components of sustainable crop rotations. Therefore, this study focuses 
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on the weather factors that impact the yields of these crops. 

Saskatchewan is considered Canada’s breadbasket because its rich soils have made the 

Province a major producer of wheat and canola. In 2020, Saskatchewan’s spring wheat and canola 

production totaled 10.6 and 10.9 million tonnes, respectively, accounting for 41% and 56% of 

Canada’s total spring wheat and canola production [6]. Climatic changes captured by the 

quantified effects of temperature and precipitation on crop yields measure their economic 

significance for farmers, and domestic and international commodity markets. Therefore, it is 

crucial to quantify the impact of climate change on Saskatchewan’s crop yield. 

Over the past century, there have been three persistent trends in agriculture: increasing crop 

yields, slowly rising temperatures, and greater atmospheric CO2. Crops have been subject to 

various technological improvements pertaining to fertilizer use, fallowing, herbicides, and 

fungicides [7], as well as information systems and planning [8].  As the world’s population 

continues to grow, food security must continually be assessed and improved upon to mitigate risk 

of shortages. From an economics standpoint, it is imperative we understand how variation in 

weather over time affects the variation in yields as indicated by net revenues and land values. 

There are many studies that examine how staple crop yields rely on management, 

technological progress, and climate. The current research seeks to contribute to this growing 

literature by utilizing data collection, analytical and econometric approaches. The literature on 

crop productivity and climate change, as well as relevant plant physiology studies, are summarized 

below. 

In this study, we develop an econometric model to capture dynamic temperature and soil 

quality effects on agricultural productivity in Saskatchewan. Our approach uses a Geographic 

Information System (GIS) data interpolation methodology to combine regional weather variations 
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with farm productivity data. Farmers maximize profits by working the intensive and extensive 

margins of production. Our research focuses on the former: improvements to lands already in use. 

Farmers and central planners alike have a variety of choices that can lead to efficiency 

improvements. The extent to which these improvements affect productive outcomes is intertwined 

with a dynamic abiotic environment. How do we disentangle the effect of agents’ decisions with 

the prevailing stochastic weather? To do so, we focus on the extent to which climate change 

impacts agricultural productivity. There exist causal relationships between weather and crop yields 

that, after controlling for agent decision-making and non-weather factors, can be used to forecast 

the efficacy of decision-making and, thereby, improve our understanding of how farmers can make 

best use of land. Thus, our research contributes to literature that attempts to understand these causal 

relationships. To do so, we create a novel dataset that exploits spatial and temporal variation of 

agricultural productivity and weather systems. 

2. Literature Review 
The argument for crop research is simple: improve the land currently allocated to agriculture and 

retain or improve global food security. In doing so, we prevent land otherwise used to meet other 

needs from being brought into use [9]. In economic terms, we improve the agricultural system at 

the intensive margin. Stevenson et al. [9] point out that, between the mid-1960s and mid-2000s, 

global population grew by 93% and cereal yields by 112%, while the area harvested increased only 

by 1.6%. This discrepancy between intensive and extensive margins is monumental and implies 

that farm-level technological improvements and adaptation have focused largely on the intensive 

margin. The question remains: how much of a role has variation in weather, specifically 

temperatures, and atmospheric CO2 played? 

Studies investigating crop yield response to weather variables have become increasingly 
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popular because of concerns about climate change. Many econometric modeling studies have 

explored the impact of climate change on agricultural output and provided mixed results partly 

attributed to the weather data employed, model specifications, and geographic location. Since 

Rosenzweig and Parry [10] produced one of the first assessments of climate change impacts on 

global food supply, numerous studies have examined the potential adverse effects on global crop 

yields, particularly the effect of rising temperature [11-15]. 

Chen et al. [16] employed a regression model that allows for spatial dependence in crop 

yields across counties, finding that, by the end of this century, soybean and maize yields in China 

are expected to be adversely affected by higher temperatures with more significant yield reductions 

for soybean than maize. Apart from crop yield reductions, crop yield variability is likely to be 

impacted by warmer temperatures. According to Lobell et al. [17], global warming is expected to 

reduce global yields of wheat by 5.5% compared to a counterfactual without global warming—the 

expected increase in yields is lower than it would be otherwise. Employing a hedonic approach 

and a nonlinear transformation of the temperature variables, Schlenker and Roberts [18] concluded 

that different warming temperature scenarios would result in a 10%–25% decrease in U.S. 

farmland values. For India, Taraz [19] used a flexible temperature binning approach to show that 

higher temperatures are significantly harmful to yields. Their framework allows for nonlinearity 

in temperature impacts and is discussed in greater detail in the methodology section of this paper 

as we expand on this approach for our analysis. 

Adverse weather creates systemic risk in the agricultural sector, but also presents 

opportunities for adaptation and exploitation [20]. One yield improvement is in the genetic 

engineering of crop species, namely, through increased resistance to insects, disease, and 
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herbicides—which reduce loss—and increased nutritional quality and yields [21].1 Genetic 

engineering is also used in the development of drought tolerance among most staple crops to 

reduce water stress [23,24]. Drought resistance is of particular importance in arid and semi-arid 

regions. Bapela et al [25] found drought stress led to reductions in potential yield, particularly 

reducing wheat yield by 63% in Pakistan, 25% in China, 43% in Egypt, and 40% in South Africa. 

Of similar importance is engineered resistance to high temperatures that makes “plant growth and 

development possible under heat stress” [26]. The ability for crops to grow in “…high ambient 

temperature is one of the major constraints in obtaining maximum output,” [27] which is 

imperative to maintaining global food security. These topics, whilst themselves beyond the scope 

of this research, aid us in the formulation of our analytical framework. 

While several studies have concentrated on the adverse effects of global warming on crop 

yields or agricultural profits, a few studies have examined the combined effects of temperature and 

precipitation on agricultural output by employing cumulative growing season weather variables 

[28,29]. For example, Meng et al. [30] investigated the impact of precipitation and temperature 

changes on canola and spring wheat yield distributions using moment-based methods and found 

that average crop yields are positively associated with growing season degree-days and pre-

growing season precipitation. At the same time, they are negatively affected by extremely high 

temperatures during the growing season.  

One opportunity that has been identified is CO2 fertilization and its relationship with water 

use efficiency. Rising atmospheric CO2 affects crop yields by increasing the rate of photosynthesis 

and water-use efficiency. Deryng et al. [31] found that the ratio of crop yields to the rate of 

evapotranspiration will likely increase by 10 to 27 percent by 2080, with much less water required 

                                                 
1 See Anderson et al. [22] for a more in-depth discussion of genetically engineered crops, their role in 
managing pest, and global use. 
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to achieve the same yields. This is crucial given the extent of population growth projected for the 

next fifty or more years, although projections of population growth remain contentious (e.g., 

Bricker and Ibbitson [32]). The researchers employ a modelling approach and project crop yields 

in 2080 under climate change with and without a CO2-fertilization effect. If CO2-fertilization 

effects are ignored, severe negative effects on crop yields occur; but, when CO2 fertilization is 

taken into account, these negative effects are “fully compensated for in wheat and soybean, and 

mitigated by up to 90% for rice and 60% for maize” [31 p. 787]. Deryng et al. conclude that rising 

atmospheric CO2 can ultimately provide opportunities to increase food production to meet 

population growth without straining water resources, particularly in semi-arid and arid regions 

with rainfed crops. 

Long et al. [33] investigated the theoretical maxima of yields, finding that the remaining 

avenue for further yield improvements exists through photosynthesis. They found that the best 

means of increasing leaf photosynthesis was through elevated CO2, although their research 

indicated that, as temperature rose, CO2 uptake seemed to change. For example, they found that 

the existence of a tipping point in gross canopy CO2 uptake with respect to temperature for C3 

crops (e.g., wheat, canola, barley, oats) occurs just above 20oC [33 fig 3]. The implications of an 

increasing concentration of atmospheric CO2 are important for food security, where much of the 

conversation focuses on global warming. This is especially important for developing countries 

located in arid regions where crop yield efficiencies are lower (often due to lower levels of fertilizer 

use), and water is scarcer than in developed countries. 

The relationship between CO2, temperature, and crop yields can give us a notion as to how 

anthropogenic emissions of CO2 may impact productivity and potentially mitigate damages from 

rising temperatures. Further, they provide potential to adapt and harness species of staple crops 
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that thrive under these conditions. One needs to look at farm-level data to observe CO2-fertilization 

effects because regional data on a global scale are not readily available. 

Lobell and Field [34] simulated crop yields for wheat, rice, maize, soy, barley and sorghum 

using FAO crop yield data, but they ignored the CO2-fertilization effect. These authors found large 

significant negative effects on regional yields from global warming, but their conclusions may 

well have been quite different if there had been adequate data on CO2 levels. Without inclusion of 

CO2 fertilization, we can treat these results as upper bounds on temperature impacts. Another 

important relationship they found was that 29% of the annual variation in yields was attributable 

to temperature and precipitation variability, citing technological advances, rising CO2, and other 

non-climatic factors. 

Schlenker & Roberts [35] employed a county-level panel statistical model for U.S. maize 

and soybean yields, finding that yields increase with temperature up until 29°C and 30°C, 

respectively (p.15594). This suggests nonlinearities in yield-temperature response. Schlenker & 

Roberts find that area-weighted yields are predicted to decrease by 30-82% across a range of 

climate scenarios indicating severe damages across the U.S. (p.15595). They also find that “greater 

precipitation partially mitigates damages from extreme high temperatures” (p.15596)—with 

precipitation not generally modeled to the same extent as temperature due to its much greater 

variation across a landscape. The IPCC [1] also projects that “extreme heat thresholds relevant to 

agriculture” will be exceeded. Again, CO2 fertilization was ignored. 

Zhao et al. [36] find average yield reductions of 6.0%, 3.2%, 7.4%, and 3.1% for every 1°C 

for wheat, rice, maize, and soybean, respectively. They do note that these impacts are “without 

CO2 fertilization, effective adaptation, and genetic improvement,” (p.9236) which other studies 

have shown to be important drivers of productivity improvements and compensatory mechanisms 
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(viz., CO2 fertilization improving water use efficiency).  

Some studies have filled this gap between temperature and CO2 fertilization. Challinor et 

al. [37] construct a first differences linear model with yield as a function of temperature, CO2, and 

precipitation among other control variables. They find a 5.4% yield reduction per °C and an 

increase of 6% (=0.06%×100) per 100 ppm of CO2, as well as a 7.16% increase from adaptative 

measures. Depending on the climate scenario employed, this suggests that less developed countries 

are at most risk given a decreased ability to adapt and higher projected temperature increases. They 

also project agroclimatic responses to the end of the century, finding positive yield changes in 

temperate regions yet decreases for tropical crops in the latter half. 

A literature review by Kulshreshtha [38] identified uncertainties in yield predictions, 

implying that crop productivity could increase or decrease in a changing climate. Uncertainties in 

yield also include gaps in our understanding of climatic variability. This includes our 

understanding of interactions among various teleconnections, such as the El Niño-Southern 

Oscillation (ENSO), North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), 

and the Atlantic Multidecadal Oscillation (AMO). These climate oscillations are periodically 

fluctuating oceanic and atmospheric phenomena, which are related to worldwide variations in 

weather patterns and crop yields.  

Another study by Moore et al. [39] parameterizes damage functions for integrated 

assessment models using agricultural impacts. They find more adverse effects than are currently 

employed in the social cost of carbon literature. Their analysis derives net benefits and costs of 

$2.7 and $8.5 per ton of CO2. In terms of marginal yield effects, they find an 11.5% increase for 

C3 crops from a doubling of CO2 from pre-industrial times, but a slightly lower increase of 8.7% 

for C4 crops which include maize (corn), sugarcane, and sorghum. 
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3. Data 
Canada is one of the top five wheat exporters, with an average of $7 billion exported annually [5]. 

Almost all of Canada’s wheat is produced in Saskatchewan, Alberta, Manitoba, and northwestern 

BC, with relatively small production in eastern Canada. Together the Canadian Prairie provinces 

accounted for 97.4% of the total wheat area in Canada in 2020 [6]. In 2020 Saskatchewan 

accounted for 45% of total wheat grown in Canada. Likewise, western Canada is Canada’s primary 

canola producing region. In Saskatchewan, canola is seeded during May, with bolting and 

flowering beginning in late June to early July. It is usually harvested mid-August to early 

September, much like spring wheat. Figure 1 provides the historical trend of canola and spring 

wheat production by the western provinces, and Canada as a whole, over the period 1966-2020.  

 

Figure 1: Production (Mt) of Canola (left) and Spring Wheat (right), Western Canada 
and Total, 1966-2020 

We utilize a novel panel dataset that combines crop yields with weather data. We collected 

monthly weather station data for 10 years across 60 different stations. Each original dataset 

constitutes daily weather data separated into monthly Excel files. All available months for all 60 
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weather stations were downloaded separately [41] and then merged into one dataset containing 

maximum, minimum, and average temperatures, and precipitation data for every single day 

between 2011-2020. These data were then interpolated to create a complete representation of 

weather conditions for 200 rural municipalities (RMs) in Saskatchewan. Afterwards, variables 

representing temperature ‘bins’ were created—each bin counts the number of days where average 

temperatures fell within a certain range [19]. This allows for nonlinearity in temperature effects. 

The data are then matched up to a time series of yields to create a novel panel dataset. An 

econometric model is then used to exploit variation in weather, soil quality, and productivity to 

estimate potential damages from temperature and how they vary across soil zones.  

The interpolation employed takes an inverse-distance weighted average of weather stations 

within a 100 km radius wherein the interpolated temperature for a given rural municipality takes 

the form: 

𝑇𝑇𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑎𝑎
𝐷𝐷𝑎𝑎

+
𝑇𝑇𝑏𝑏
𝐷𝐷𝑏𝑏

+ ⋯+
𝑇𝑇𝑛𝑛
𝐷𝐷𝑛𝑛

 with 𝐷𝐷𝑎𝑎 + 𝐷𝐷𝑏𝑏 + ⋯+ 𝐷𝐷𝑛𝑛 = 1, 

where 𝑇𝑇𝑟𝑟𝑟𝑟 is temperature in oC in a RM is a function of observed temperatures 𝑇𝑇𝑖𝑖 weighted 

inversely by proportional distances 𝐷𝐷𝑖𝑖 for weather stations i that are within a 100km radius of an 

RM. This serves the primary purpose of giving a higher weight to stations in closer proximity. The 

circle of radius was chosen so that the interpolation considers at least two weather stations for each 

RM. This same approach is used for interpolating precipitation data. Figure 2 indicates weather 

stations as red dots and where they are located relative to rural municipalities.  
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Figure 2: Weather Stations Overlaying Rural Municipality Boundaries, Saskatchewan 

Descriptive summary statistics are reported in Table 1. Yields vary from 5 to 57.93 bushels 

per acre (bu/ac), with an average of 35.604 bu/ac. Bin1 represents days when temperatures fell 

below 3oC and Bin2 represents days where temperatures are between 3-5oC. These are not 

employed in the regression framework, however, as these temperatures are below those required 

for plant growth to occur. The same treatment is given to studies that employ growing degree day 

frameworks [42]. Growing season precipitation peaks in June and July, whereas May and August 

represent beginning and end of season rainfall that are of importance. To make up for a lack of 

explanatory control variables, a two-way fixed effects model is used to capture time-invariant and 

location-invariant determinants of crop yields. This is discussed in detail in the following section. 
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Table 1: Summary Statistics for Canola, Wheat, and Weather for Saskatchewan N=2,590a 
Variable Mean Std. Dev. Min Max 

Canola (bu/ac) 35.604 8.176 5.000 57.930 

Wheat (bu/ac) 42.922 11.002 12.340 198.000 

Bin1 (<3 oC) 17.022 6.579 0 32 

Bin2 (3-5 oC) 6.785 3.070 0 18 

Bin3 (5-7 oC) 9.003 3.667 0 19 

Bin4 (7-9 oC) 11.241 3.419 3 23 

Bin5 (9-11 oC) 13.663 4.199 2 26 

Bin6 (11-13 oC) 17.187 4.266 2 32 

Bin7 (13-15 oC) 22.561 6.719 6 44 

Bin8 (15-17 oC) 27.885 5.189 4 44 

Bin9 (17-19 oC) 26.096 5.400 7 43 

Bin10 (19-21 oC) 18.095 4.816 3 32 

Bin11 (21-23 oC) 9.004 4.042 0 24 

Bin12 (>23 oC) 3.226 2.879 0 14 

May Precipitation 39.458 30.889 0.000 155.114 

June Precipitation 79.068 40.585 0.000 252.100 

July Precipitation 61.698 33.559 0.000 189.422 

August Precipitation 42.097 25.974 1.900 138.511 

North Atlantic Oscillation 0.00001 0.949 -1.080 2.301 

Atlantic Multi-Decadal Oscillation 0.002 0.949 -1.299 1.449 
a All Bin variables are measured in days and all Precip variables are measured in mm 
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4. Econometric Model 
To analyse Saskatchewan agricultural productivity, we devise a linear panel econometric model 

following Taraz [17] that takes the simplest form: 

ln (𝑌𝑌𝑟𝑟,𝑡𝑡) = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + 𝑢𝑢𝑟𝑟,𝑡𝑡, 

where Y is yield (t/ha) in rural municipality r at time t, T represents the number of days that daily 

average temperature falls within a bin: <3oC, 3-5oC, 5-7oC, …, 21-23oC, and >23oC. The 

disturbance term, u, captures unobserved determinants of yield.  

The underlying relationship is much more complicated. Temperatures vary over the 

growing season, leading to different yield outcomes. Our approach assumes that the impact of high 

temperature days does not depend on timing (e.g., a high temperature day after a spell of cold 

days). The impact of precipitation in certain months depends on timing with respect to the growing 

season. Precipitation is included only as a control variable because the underlying relationship 

between soil moisture and crop growth is more complicated than that based solely on growing 

season rainfall. There are also a host of omitted variables that heavily influence the outcome, such 

as soil quality, CO2 fertilization, solar irradiance, and management practices. To address these 

issues, various solutions are implemented. 

The dependent variable in our model is converted to the natural logarithm of crop yields. 

This serves two purposes: crop yields have been shown to be log-normally distributed as negative 

yields are not possible [43]; and this formulation lends itself a valuable interpretation of crop-

temperature responses. If we assume crops are log-normally distributed, this implies that we can 

assume normality of the disturbance term. The interpretation of each coefficient changes because 

of this conversion—we can interpret our linear coefficients as semi-elasticities. That is, they 
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describe the percentage response in the dependent variable to unit changes in our independent 

variables. 

As noted, we employ binning of temperature data to address variability in temperature and 

its distributional impacts, which allows us to account for growing season variation. It also enables 

us to provide more insight into the marginal effects than would be found via annual growing season 

temperature. It also allows for nonlinearity in marginal temperature impacts. In the case of 

precipitation, not only the amount of rainfall but also its timing during the growing season is 

important. Therefore, instead of total seasonal precipitation, monthly cumulative precipitation 

variables were used to capture the impact of monthly variation 

Soil quality is an important determinant of farm level outcomes. Soil zones vary by nutrient 

levels and ability to absorb and maintain moisture. We create dummy variables representing each 

of the regions to account for spatial variation attributable to higher and lower quality soils across 

Saskatchewan. Alternatively, the location of RM centroids, as measured by longitude and latitude, 

can be used as a proxy for soil zone. These centroids are available from the GIS model. 

Data pertaining to CO2 fertilization, solar irradiance (SI), and management practices are 

more problematic, because we do not have robust data on CO2 and SI variability despite their 

importance for plant growth. Therefore, we employ rural municipality location Fixed Effects (FE). 

This controls for unobservable determinants of yield that are time-invariant over our 10-year time 

horizon, although they may vary across RMs. The soil dummy variables are dropped from the FE 

regressions as these are taken into account by the rural municipality FEs. We also implement year 

FEs to control for determinants of yield that are common across all RMs that change from year-

to-year. This approach serves as a caveat to our model because CO2 and SI vary continuously 

throughout the growing season. The benefit of employing this approach is that it controls for all 
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unobservable determinants that are common across Saskatchewan, including technological 

advances and innovations that improve farm productivity. This approach also renders time-

invariant unobservable variables non-problematic to our regression framework [44]. A step-by-

step description for each of the above improvements is provided in Table 2. 

Table 2: Description of Regression Specificationsa 
Specification Functional Form Description 

(1) 𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + 𝑢𝑢𝑟𝑟,𝑡𝑡 

Baseline naïve OLS (random 
effects) that includes only 
temperature bins 

(2) 𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + �𝝃𝝃𝒌𝒌

𝟑𝟑

𝒌𝒌=𝟏𝟏

𝑺𝑺𝑺𝑺𝑺𝑺𝒍𝒍𝒓𝒓𝒌𝒌 + 𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳 + 𝑳𝑳𝑳𝑳𝑳𝑳

+ 𝑢𝑢𝑟𝑟,𝑡𝑡 

Includes control variables for 
coordinates as well as soil types 

(3) 𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + �𝜉𝜉𝑘𝑘

3

𝑘𝑘=1

𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑟𝑟𝑘𝑘 + �𝜸𝜸𝒋𝒋

𝟒𝟒

𝒋𝒋=𝟏𝟏

𝑷𝑷𝒓𝒓,𝑳𝑳
𝒋𝒋

+ 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑢𝑢𝑟𝑟,𝑡𝑡 

Includes monthly precipitation in 
each of May, June, July, and August 

(4) 𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + 𝚿𝚿𝒓𝒓𝒓𝒓 + 𝑢𝑢𝑟𝑟,𝑡𝑡 

Excludes explicit fixed effects that 
do not vary over time (soil zones 
and coordinates) and includes a 
fixed effects term for each RM. 
Without monthly precipitation 
variables. 

(5) 𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + �𝜸𝜸𝒋𝒋

𝟒𝟒

𝒋𝒋=𝟏𝟏

𝑷𝑷𝒓𝒓,𝑳𝑳
𝒋𝒋 + Ψ𝑟𝑟 + 𝑢𝑢𝑟𝑟,𝑡𝑡 

Includes monthly precipitation to 
specification (4) for the sake of 
seeing how the results change with 
and without precipitation under the 
fixed effects model 

(6) 𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + Ψ𝑟𝑟 + 𝚽𝚽𝑳𝑳 + 𝑢𝑢𝑟𝑟,𝑡𝑡 

Includes time fixed effects in 
addition to location fixed effects 
(two-way fixed effects), initially 
without monthly precipitation 

(7) 𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝑇𝑇𝑟𝑟,𝑡𝑡
𝑖𝑖 + �𝜸𝜸𝒋𝒋

𝟒𝟒

𝒋𝒋=𝟏𝟏

𝑷𝑷𝒓𝒓,𝑳𝑳
𝒋𝒋 + Ψ𝑟𝑟 + Φ𝑡𝑡 + 𝑢𝑢𝑟𝑟,𝑡𝑡 

Includes precipitation to 
specification (6) 

a Changes over previous specification are shown in bold. 

The statistical model that results takes the form: 

𝑌𝑌𝑟𝑟,𝑡𝑡 = �𝛽𝛽𝑖𝑖

13

𝑖𝑖=1

𝐵𝐵𝑆𝑆𝐿𝐿𝑟𝑟,𝑡𝑡
𝑖𝑖 + �𝛾𝛾𝑗𝑗

4

𝑗𝑗=1

𝑃𝑃𝑟𝑟,𝑡𝑡
𝑗𝑗 + Ψ𝑟𝑟 + Φ𝑡𝑡 + 𝑢𝑢𝑟𝑟,𝑡𝑡, 

where P is precipitation in month j, Ψ are location fixed effects, and Φ are time fixed effects. 
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To further establish validity, we employ several robustness checks for different aspects of 

the model. There are two prominent choices for linear panel models: FE and Random Effects (RE) 

models. They differ in their treatment of the relationship between the error term and the 

independent variables [45]. Vaisey and Miles (46 p. 47) point out that RE models assume the 

observed predictors in the model are not correlated with individual-specific dummy variables, 

while FE models allow them to be correlated. In our analysis, this would translate to the RE model 

assuming RM-specific impacts (viz., droughts, location-specific plant disease) are uncorrelated 

with temperature. A priori, we believe this too bold of an assumption and as such we explore 

diagnostic tests. 

This difference in error term treatment can be directly tested with the Hausman [47] test. 

If we reject the null hypothesis associated with this test, we should use the FE model instead of 

the RE model because we have evidence that the error term, specifically unobservable 

determinants of crop yields, are indeed correlated to our observable variables. 

After establishing the use of a FE model, we can further check whether location FE are 

sufficient or if we should account for time FE as described earlier in this section. We can test 

whether there are time specific effects that are common across municipalities with a Breusch-

Pagan (BP) test [48]. This approach simply incorporates dummy variables representing each year 

and performs a joint Lagrange multiplier test of significance on the inclusion of these variables. 

We also explore the models for the presence of heteroscedasticity, employing a BP test that tests 

the null hypothesis of constant variance in the error term. We formally employ statistical tests for 

each of these diagnostics and report the findings below in Table 3. 
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Table 3: Diagnostic Tests for the Econometric Model 
 Hausman Test Breusch-Pagan Test 

for Time FE 
Breusch-Pagan Test for 

Homoskedasticity 
Test Statistic χ2 = (37.81, 166.43) χ2 = (5.019, 5.019) 𝐵𝐵𝑃𝑃 = (159.03, 207.40) 

P-value (0.0010, 0.0000) (0.02507, 0.02507) (0.0000, 0.0000) 

Decision (reject, reject) (reject, reject) (reject, reject) 

a Values in parentheses correspond to model specifications for (canola, wheat) 

The Hausman test indicates that the uit are uncorrelated with the independent variables, 

which implies that we have statistically significant evidence that the RE model is inappropriate for 

analysis of the relationship between canola yields and temperature, as expected. On the basis of 

the BP test, we reject the null hypothesis that time FEs are not important determinants of canola 

and wheat yields—we have statistically significant evidence that time FEs are jointly significant 

determinants of canola yields and should be included in the regression model. Based on the BP 

test for homoscedasticity, we reject the null hypothesis that the variance of the error terms is 

constant, implying that our error terms display heteroskedasticity (e.g., non-constant variance). 

We address these diagnostic tests by employing (i) a fixed effects regression framework; 

(ii) time fixed effects to control for location-invariant determinants of canola yields; and (iii) 

heteroskedasticy-robust standard errors in all specifications [49]. The regression analysis therefore 

begins with simple Ordinary Least Squares (OLS), and then progressively adds more to the 

specification (see Table 2). This analytical approach allows us to observe differences in the model 

parameters, coefficients of correlation, and F-tests of joint significance across our specifications. 

It is worth reiterating that average daily temperatures are used to construct bins, therefore 

days of average temperatures exceeding 15oC, for example, could be reflective of daytime 

temperatures reaching as high as 30oC at certain points of the day. We also know from the literature 

that high temperatures are only damaging when there is insufficient rainfall or soil moisture. 
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5. Results 

5.1 Explaining Canola Yields 

Regression results for canola are reported in Table 4. Specification (1) reports simple OLS where 

temperature bins alone explain 20% of the temporal and regional variation in crop yields. The 

negative signs on nearly all temperature bins, representing days above and below 11-13oC, is 

indicative of misspecification and omitted variable bias. 

Soil type and the inclusion of both oscillatory mechanisms in specification (2) only explain 

an additional 2.8% of variation in yields. Coefficient estimates for NAO and AMO mechanisms 

are positive indicating the influence of non-climatic variables. Relative to municipalities located 

in brown soil zones, yields are 3.8% and 4.7% more bushels per acre in black and dark brown soil 

zones, respectively. Coefficient estimates for bins do not change much with this addition. 

The addition of variables accounting for precipitation between May and August account 

for an additional 13.3% of variation in yields over the first specification. The coefficient estimates 

do not change much and still exhibit negative signs for most bins above and below the reference 

regression. Already economically small differences between soil zones are no longer statistically 

significant under this specification, implying little to no difference across soil zones in canola 

productivity. 

When we sequentially include soil quality and oscillatory mechanisms, and then 

precipitation controls to the random effects model in specification (1), the results are largely 

unchanged. We do, however, have evidence that the random effects model is an inappropriate 

formulation—our diagnostic test results in Table 3 tell us that the fixed effects approach is valid 

for both location and time fixed effects.  
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Table 4: Regression Results for Canola Yields 
Dependent 
variable: 
log(Yield) 

Random Effects  Location Fixed Effects  Two-way Fixed Effects 

(1) (2) (3)  (4) (5)  (6) (7) 

Bin3 (5-7oC) -0.006*** -0.004*** -0.004**  -0.003** -0.002  0.008*** 0.006*** 
 (0.001) (0.001) (0.002)  (0.001) (0.002)  (0.001) (0.001) 
Bin4 (7-9oC) -0.009*** -0.006*** -0.009***  -0.004*** -0.006***  0.005*** 0.004*** 
 (0.001) (0.001) (0.001)  (0.001) (0.002)  (0.001) (0.001) 
Bin5 (9-11oC) -0.003*** -0.003** -0.008***  0.0002 -0.006***  -0.005*** -0.006*** 
 (0.001) (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
Bin7 (13-15oC) -0.001* -0.0005 -0.0004  0.0001 -0.0001  -0.002** 0.0001 
 (0.001) (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
Bin8 (15-17oC) 0.003*** 0.001 0.001  0.001 0.001  -0.003** -0.00002 
 (0.001) (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
Bin9 (17-19oC) -0.001 -0.002* -0.002**  -0.004*** -0.004***  -0.004*** -0.001 
 (0.001) (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
Bin10 (19-21oC) -0.010*** -0.012*** -0.004***  -0.014*** -0.007***  -0.003** -0.002** 
 (0.001) (0.001) (0.001)  (0.001) (0.002)  (0.001) (0.001) 
Bin11 (21-23oC) -0.003** -0.005*** -0.005***  -0.009*** -0.009***  -0.006*** -0.006*** 
 (0.001) (0.001) (0.001)  (0.002) (0.002)  (0.002) (0.002) 
Bin12 (>23oC) -0.027*** -0.027*** -0.031***  -0.032*** -0.039***  -0.030*** -0.033*** 
 (0.002) (0.002) (0.002)  (0.003) (0.003)  (0.003) (0.003) 
NAO  0.046*** 0.032***  0.058*** 0.047***  -0.126*** -0.142*** 
  (0.005) (0.006)  (0.005) (0.006)  (0.024) (0.022) 
AMO  0.036*** 0.029***  0.036*** 0.029***  0.132*** 0.116*** 
  (0.005) (0.006)  (0.005) (0.006)  (0.009) (0.009) 
Black SZ  0.038* 0.011       
  (0.02) (0.02)       

Dark Brown SZ  0.047** 0.025       
  (0.019) (0.019)       
May Precip   -0.001***   -0.001***   0.001*** 
   (0.0003)   (0.0003)   (0.0002) 
June Precip   -0.001***   -0.001***   -0.001*** 
   (0.0001)   (0.0002)   (0.0001) 
July Precip   0.002***   0.002***   0.0003** 
   (0.0002)   (0.0002)   (0.0001) 
August Precip   -0.00001   -0.0001   -0.001*** 
   (0.0002)   (0.0002)   (0.0001) 
Location FE No No No  Yes Yes  Yes Yes 
Time FE No No No  No No  Yes Yes 
Obs. 2,590 2,590 2,590  2,590 2,590  2,590 2,590 
R2 0.202 0.232 0.366  0.216 0.375  0.512 0.537 
Adjusted R2 0.200 0.228 0.361  0.125 0.301  0.454 0.481 
F Statistic 655.2*** 779.4*** 1,482.6***  58.0*** 92.7***  135.0*** 121.7*** 
Note: Heteroskedasticity-robust standard errors reported in parentheses. *p<0.1; **p<0.05; ***p<0.01 
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In our simple FE model, shown in specification (4), the results are not dissimilar to our 

previous specifications. The adjusted R2 shows that it only explains 12.5% of the variation in 

yields, suggesting that there are omitted determinants of yields, and underperforms in explanatory 

power when compared to our initial model. Further, adding controls for precipitation quickly 

increases this explanatory power to 30.1% which is not quite as much as the RE model with full 

controls at 36.1%. 

When we include time fixed effects, we find substantial improvements to the model. In 

specification (6) the adjusted R2 increases so that 45.4% of variation in yields is explained after 

we include dummy variables for each year. This further increases to 48.1% after we include 

precipitation controls in specification (7). The coefficient estimates are shown below in Figure 4. 

Contrasting the simple OLS results in specification (1) with our preferred specification (7), 

a variety of interesting insights arise. First, reduced yields relative to potential yield do not occur 

until higher temperatures than initially estimated using our random effects model, specifically, 

they occur at and beyond 19oC (Bins 10-12). Days with cooler average temperatures of 5-9oC are 

more beneficial than those of 11-13oC, yet days with average temperatures of 9-11oC are associated 

with reduced yields. We are not sure what is driving the latter result. Otherwise, days with average 

temperatures of 13-17oC are no more or less beneficial than those of 11-13oC. Importantly, there 

exists statistical evidence against any yield reductions. Potential yields appear to be dampened 

after 19oC at an increasing rate. Specifically, the average reduction in potential yield is 0.2% for 

an additional day where average temperatures are 19-21oC, 0.6% for 21-23oC, and finally 3.3% 

for days where temperatures exceed 23oC. The impact of medium-high temperatures (19-23oC) are 

associated with some productivity loss that could add up if high temperatures are sustained. It is 

easy to see how impactful extreme temperatures could be, but it is important to recognize our 
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results represent the average impact of all days beyond 23oC and could be attributable to low 

probability, extreme events. 

 
Figure 4: Estimated Semi-Elasticities between Temperature and Yields for Canola 

What is also of interest is precipitation’s impact on crop yields. The literature tells us that 

precipitation in May through August is most impactful, yet we arrive at counterintuitive results. 

More rainfall in May and July is beneficial to crop yields yet rainfall in June and August is 

negative. There are a few things that could be driving these results. Our time fixed effects are likely 

accounting for some year-to-year variation in precipitation that is common across all RMs. 

Previous specifications that include rainfall but not time fixed effects garner largely negative 

results: additional rainfall in May, June, and August reduce crop yields and rainfall in July 

increases crop yields. This is counterintuitive as moisture is one of, if not the most, beneficial 

resources for plant growth. As stated before, however, growing season precipitation is a poor proxy 

for soil moisture which depends on winter precipitation, soil moisture retention, and many other 

factors. Thus, these results should not be taken too seriously. We treat precipitation in our wheat 
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regressions similarly, a discussion to which we now turn. 

5.2 Explaining Wheat Yields 

Regression results for wheat are reported in Table 5. Specification (1) reports simple OLS where 

temperature bins alone explain 20% of the temporal and regional variation in crop yields. Similar 

to the canola results, the negative signs on nearly all temperature bins, representing days above 

and below 11-13oC, is indicative of misspecification and omitted variable bias. 

Soil type and the inclusion of both oscillatory mechanisms in specification (2) explains an 

additional 18.2% of variation in yields, markedly higher than in the canola regression (2.8%). 

Coefficient estimates for the NAO and AMO indexes are again positive and indicative of non-

climate change factors. Relative to RMs located in the brown soil zones (SZ), yields are 25.4% 

and 17.8% higher in black and dark brown SZs, respectively. These estimates are highly 

statistically significant. The addition of variables accounting for precipitation between May and 

August account for an additional 4.4% of variation in yields and slightly reduce SZ estimates to 

23.4% and 16.1% for black and dark brown SZs, respectively. Coefficient estimates for low 

temperatures (<3oC) are no longer statistically significantly negative.  

In our FE model, shown in specifications (4) and (5), the results are not dissimilar to those 

in specifications (2) and (3). The adjusted R2 shows that specification (4) and (5) only explain 24% 

and 29.1%, respectively, of the variation in yields; this suggests there are omitted determinants of 

yields. This is still quite less than that of the RE model that had an adjusted R2 of 42.6%. 

 

  



23 | P a g e  
 

Table 5: Regression Results for Wheat Yields 
Dependent 
variable: 

log(Yield) 

Random Effects Location Fixed Effects Two-way Fixed Effects 

(1) (2) (3) (4) (5) (6) (7) 

Bin3 (5-7oC) -0.006*** -0.002 -0.0002 -0.001 -0.0001 0.005*** 0.005*** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Bin4 (7-9oC) -0.008*** -0.003** -0.003** -0.003** -0.003** 0.004*** 0.004*** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Bin5 (9-11oC) -0.005*** -0.005*** -0.006*** -0.005*** -0.006*** -0.004*** -0.003*** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Bin7 (13-15oC) -0.001 0.001 0.001 0.001 0.001 -0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Bin8 (15-17oC) 0.001 -0.004*** -0.004*** -0.003*** -0.004*** -0.002** -0.002* 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Bin9 (17-19oC) -0.004*** -0.008*** -0.007*** -0.008*** -0.007*** -0.003*** -0.002** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Bin10 (19-21oC) -0.009*** -0.011*** -0.005*** -0.011*** -0.006*** -0.002** -0.002* 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Bin11 (21-23oC) -0.008*** -0.009*** -0.007*** -0.009*** -0.008*** -0.005*** -0.005*** 
 (0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.001) 

Bin12 (>23oC) -0.021*** -0.018*** -0.022*** -0.018*** -0.022*** -0.018*** -0.020*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

NAO  0.074*** 0.062*** 0.075*** 0.063*** -0.126*** -0.132*** 
  (0.005) (0.005) (0.005) (0.005) (0.019) (0.019) 

AMO  0.088*** 0.088*** 0.088*** 0.088*** 0.160*** 0.150*** 
  (0.005) (0.005) (0.005) (0.005) (0.008) (0.007) 

Black SZ  0.254*** 0.234***     
  (0.022) (0.021)     

Dark Brown SZ  0.178*** 0.161***     
  (0.023) (0.022)     

May Precip   -0.001***  -0.001***  0.0002 
   (0.0002)  (0.0002)  (0.0002) 

June Precip   -0.0001  -0.0001  -0.0003** 
   (0.0001)  (0.0001)  (0.0001) 

July Precip   0.001***  0.001***  0.0001 
   (0.0001)  (0.0001)  (0.0001) 

August Precip   -0.001***  -0.001***  -0.001*** 
   (0.0001)  (0.0001)  (0.0002) 

Location FE No No No Yes Yes Yes Yes 
Time FE No No No No No Yes Yes 

Obs. 2,590 2,590 2,590 2,590 2,590 2,590 2,590 
R2 0.203 0.385 0.429 0.319 0.366 0.454 0.461 
Adjusted R2 0.200 0.382 0.426 0.240 0.291 0.389 0.396 
F Statistic 656.3*** 1,612.8*** 1,936.0*** 98.8*** 89.0*** 106.7*** 89.8*** 
Note: Heteroskedasticity-robust standard errors reported in parentheses. *p<0.1; **p<0.05; ***p<0.01 
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When we include time fixed effects, we see substantial improvements to the model. In 

specification (6) the adjusted R2 increases to explaining 38.9% of variation in yields after we 

include dummy variables for each year. This further increases to 39.6% after we include 

precipitation controls in specification (7). This outperforms the simple location fixed effects 

model. The coefficient estimates are shown below in Figure 5. 

Reduced yields relative to potential yield occur at and beyond 15oC (Bins 8-12) though the 

impact is incredibly small: an additional day where average temperatures are anywhere between 

15 and 21oC is associated with a 0.2% reduction in potential bushels per acre. Similar to the results 

for canola, days with cooler average temperatures of 5-9oC are more beneficial than those of 11-

13oC, associated with increases of 0.5% increases in potential yield, yet days with average 

temperatures of 9-11oC are associated with a reduction of 0.3%. We are again not sure what is 

driving the latter result. Days with average temperatures of 13-15oC are no more or less beneficial 

than those of 11-13oC. Potential yields appear to be more dampened after 21oC. Specifically, the 

average reduction in potential yield is 0.05% for an additional day where average temperatures are 

21-23oC and 2% for each day where temperatures exceed 23oC. 
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Figure 5: Estimated Semi-Elasticities between Temperature and Yields for Wheat 

6. Conclusion 

Beyond certain thresholds, rising temperatures are associated with lower yields in canola and 

wheat. In addition to identifying potential yield reductions, we find evidence of resilience to 

temperature across a broad range of temperatures, particularly so for wheat. Canola is optimally 

grown at higher latitudes where days are longer and cooler, aligned with our findings of greater 

yields at lower temperatures and larger reductions at high temperatures. This is consistent with its 

prevalence in northern agricultural regions of Saskatchewan. 

Let temperature resilience be defined as no significant yield impact relative to average 

temperatures of 11-13oC. Wheat exhibits temperature resilience up until 21oC. Canola exhibits 

temperature resilience up until 19oC. Beyond these thresholds, wheat yield potential is reduced by 

0.05% on average for every additional day where average temperatures are 21-23 oC and reduced 

by 2% for every additional day where average temperatures exceed 23oC. Canola yield potential 

is reduced by 0.2% for every additional day where average temperatures are 19-21oC, 0.6% for 
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21-23oC, and 3.3% for days where temperatures exceed 23oC. These results reflect nonlinearities 

in temperature impacts, particularly, increasing severity of impacts as temperatures become more 

extreme. Our analysis is relevant only to the Canadian context as management practices are 

endogenized in yield responses since adaptation is heterogenous between regions and countries. 

Therefore, these results do not easily extrapolate to canola and wheat generally.
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